Linear / Linked List

» Types of linear/linked lists:
1) Single Linked List
2) Doubly Linked List
3) Circular Linked List

» Single Linked List :

> Alinked list is a linear collection of data elements. These data elements are called

nodes.

> Insingle linked list every node contains two fields, data field and link field -a pointer to

the next node/address of next node.

data firm i

28

/ N

Contains data Contains
of the node address of
the next
node 14

Single Linked List....

» The node in a single linked list is declared as
struct node

{

int data;
struct node *next;

3
» The last node address field in the single linked list contains NULL.

START

— 1 —» 2| —> 3 > 4| —» 5 —>» b

Y
~J
>

» Operations performed on a single linked list:
I. Insertion
I1. Deletion
I1l. Searching

V. Traversing

Single Linked List....

>

Insertion:

Case 1: The new node is inserted at the beginning

(2| G 7] G| F—={a] 2] 6| F—5]x]
START
Allocate memory for the new node and initialize its DATA part to 9.

(o]]

Add the new node as the first node of the list by making the MNEXT part of the new

node contain the address of START.

(o] =2l =7 =] F—la]l F—=2] G| F—{5]x]

START
Mow make START to point to the first node of the list.

(o] 1] F—>[7] F—>[3] F>[a] F>{2] F>[6] F>[5]x]

START

Step 4: SET NEW NODE -» DATA = VAL
Step 5: SET NEW NODE -»> NEXT = START
Step 6: SET START = NEW NODE

Step /: EXIT

16

Single Linked List....

Case 2: The new node is inserted at the end
(2 F—172] =] F—{a] F—>{2] F—>l6] F—[51x]

START

Adlocate memory for the new node and initialize its DATA part to 9 and
MEXT part to MNULL.

[o [x|

Take a pointer wariable PTR which points to START.

-—*i?IH—PIBIH—"HIH—»izIH—'IGI4—~|5le

START,

Mowve PTR so that it points to the last node of the list.

!i?lﬂ—*IBIH—*HIH—*izIH—*IGI4—>|5IXI

Add the new node atter the node pointed by PTR. This is done by storing the address
of the new node in the MNEXT part of PTR.

(2] Iz F—lz]l F—la] F—l2] =l F—Is] F—o]x]

START PTR

Step 4: SET NEW _NODE - > DATA = VAL
Step 5: SET NEW _NODE - > NEXT = NULL
Step 6: SET PTR = START
Step 7: Repeat Step 8 while PTR - » NEXT != NULL
Step 8: SET PTR = PTR - » NEXT
[END OF LOOP]
Step 9: SET PTR - > NEXT = NEW_NODE
Step 1@: EXIT

Single Linked List....

Case 3: The new node is inserted after a given node

Allocate memory for the new node and initialize its DATA part to 9.

9

Take two pointer variables PTR and PREPTR and initialize them with START
so that START, PTR, and PREPTR point to the first node of the list.

1y > 7| —T> 3| T—>4| /> 2| /—> 6| —>5|X

START

PTR
PREPTR
Move PTR and PREPTR until the DATA part of PREPTR = value of the node
after which insertion has to be done. PREPTR will always point to the
node just before PTR.

1) = 7| —71>3|—T1>4| T> 2| 16| T1T>5 X

PREPTR PTR

1| 7| 7> 3| T4 T—> 2| T—> 6| > 5|X

Step 4: SET NEW NODE - > DATA = VAL
Step 5: SET PTR = START
Step 6: SET PREPTR = PTR
Step 7: Repeat Steps 8 and 9 while PREPTR - > DATA
I= NUM
SET PREPTR = PTR
SET PTR = PTR - > NEXT
[END OF LOOP]
Step 10: PREPTR - > NEXT = NEW NODE
Step 11: SET NEW_NODE - > NEXT = PTR

Step 12: EXIT

Step 8:
Step 9:

START PREPTR PTR
Add the new node in between the nodes pointed by PREPTR and PTR.
1 > 7 > 3 4 > 2 > b > 5| X
START PREPTRl T PTR
9
NEW_NODE
1 » 7| > 3| T 9 > 4 >] > b >

START

18

Single Linked List....

Case 4: The new node is inserted before a given node

Allocate memory for the new node and initialize its DATA part to 9.

9
Initialize PREPTR and PTR to the START node.

1 » 7| —— 3 » 4| > 2| > 6| —T>5

START

PTR
PREPTR
Move PTR and PREPTR until the DATA part of PTR = value of the node
before which insertion has to be done. PREPTR will always point to
the node just before PTR.

1 » 7| > 3

;
|
|
|
|
|

START ~ PREPTR PTR
Insert the new node in between the nodes pointed by PREPTR and PTR.

Step 4: SET NEW_NODE - > DATA = VAL
Step 5: SET PTR = START
Step 6: SET PREPTR = PTR

Step 7: Repeat Steps 8 and 9 while PTR - > DATA != NUM
Step 8: SET PREPTR = PTR

Step 9 SET PTR = PTR- > NEXT
[END OF LOOP]

Step 10: PREPTR - > NEXT = NEW_NODE
Step 11: SET NEW_NODE - » NEXT = PTR
Step 12: EXIT

1 > 7 3| | 4 2| g6 > 5
skt PREPR| 1 PTR
Y
g
NEW NODE
1| 4> 7| /9 >3 >4 12 > 6 > 3| X

START

19

Single Linked List....

> Deletion : Case 1: The first node is deleted

1y —>7|—>3| >4

START
Make START to point to the next node in sequence.

w
[
|

—> 6 1> 5([X

11> 3| 14| > 2
START

w
[
I
[Ny |
-

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 5

[END OF IF]

Step 2: SET PTR = START
Step 3: SET START = START -> NEXT
Step 4: FREE PTR
Step 5: EXIT

Case 2: The last node is deleted

Take pointer variables PTR and PREPTR which initially point to START.

1| —/— 7| > 3| 1> 4| /> 2| 1> 6| +>5|X
START
PREPTR
PTR

Move PTR and PREPTR such that NEXT part of PTR = NULL. PREPTR always points
to the node just before the node pointed by PTR.

1| —> 7| >3 —T>4| T—> 2| > 6| 1>5(X

START PREPTR PTR
Set the NEXT part of PREPTR node to NULL.

1| 7| 1> 3| >4 1> 2| 4> 6|X

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Steps 4 and 5 while PTR-> NEXT I= NULL
Step 4 SET PREPTR = PTR
Step 5:SET PTR = PTR-> NEXT [END
OF L0OP]
Step 6: SET PREPTR -» NEXT = NULL
Step 7: FREE PTR
Step 8: EXIT

20

START

Single Linked List....

Case 3: The node after a given node is deleted
Take pointer variables PTR and PREPTR which initially point to START.

1 = 7| 1> 3| > 4| > 2| T>O| 1> 55X

START
PREPTR
PTR
Move PREPTR and PTR such that PREPTR points to the node containing VAL
and PTR points to the succeeding node.

1| —»= 7| >3 />4 +> 2| > 6| T>5|X

START PREPTR PIR

START PREPTR PTR

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 10
[END OF IF]
Step 2: SET PTR = START
Step 3: SET PREPTR = PTR
Step 4: Repeat Steps 5 and 6 while PREPTR -> DATA != NUM
Step 5: SET PREPTR = PTR
Step 6:SET PTR = PTR -»> NEXT [END
OF LOOP]
Step 7: SET TEMP = PTR
Step 8: SET PREPTR -» NEXT = PTR -> NEXT
Step 9: FREE TEMP
Step 10: EXIT

1V ———> 7| /> 3| 4| /> 2| > 6| > 5|X

START PREPTR PTR
Set the NEXT part of PREPTR to the NEXT part of PTR.
1 > 7 » 3 » 4 2 6 > 5| X
START PREPTR PTR 1
1 > 7 > 3 > 4 > 6 * 51X
START

21

Single Linked List....

» Searching:

1 ——>| 7 1 w3 —>| A — | 2 —>| & ——>»| 5 »
PTR

Here PTR -> DATA = 1. Since PTR -> DATA != 4, we move to the next node.
1 = 7 > 3 —0| 4 —_— 2 —1—| O —1—»| 5 X

PTR

Here PTR -> DATA = 7. Since PTR -> DATA != 4, we move to the next node.

1 — | 7 — = 3 — = 4 — = 2 ——=| & ——=| 5 X
PTR

Here PTR -> DATA = 3. Since PTR -> DATA != 4, we move to the next node.

1 ——>| 7 » 3 > 4 —— 2 ——>| 6 ——>»| 5 X
PTR

Here PTR -> DATA = 4. Since PTR -> DATA = 4, POS = PTR. P0OS now stores
the address of the node that contains VAL

Step 1: [INITIALIZE] SET PTR = START
Step 2: Repeat Step 3 while PTR != NULL
Step 3: IF VAL = PTR -> DATA
SET P05 = PTR
Go To Step 5
ELSE
SET PTR = PTR -»> NEXT
[END OF IF]
[END OF LOOP]
Step 4: SET POS = NULL 29
Sten 5 EXTT

Single Linked List....

» Traversing:

Traversing a linked list means accessing the nodes of the list in order to perform some
processing on them.

Step 1: [INITIALIZE] SET PTR = START
Step 2: Repeat Steps 3 and 4 while PTR != NULL
Step 3: Apply Process to PTR -> DATA

Step 4:SET PTR = PTR -> NEXT [END OF

LOOP]
Step 5: EXIT

23

Doubly Linked List

>

>

A doubly linked list or a two-way linked list is a more complex type of linked list which
contains a pointer to the next as well as the previous node in the sequence.

It is a collection of node , in which each node will contain three fields- a pointer to the
previous node ,data, a pointer to the next node.

value

address of - | address of
previous node hext node
Node in DLL
The declaration of node in double linked list is given as
struct node
{
struct node *prev;
int data;
struct node *next;

¥

> The PREYV field of the first node and the NEXT field of the last node will contain NULL.
»The NEXT field is used to traverse the list in forward direction and PREYV field is used to

traverse the list in backward direction. 24

Doubly Linked List....

» Operation on Doubly linked list are

X1

V.

» Insertion:
Case 1: The new node is inserted at the beginning.

Insertion
Deletion

Searching

Traversing

"
o

-
=

/

.
.l

START

X9

"
X

3

-
P

4
.y

4

%
Ll

4
X

2

X

Allocate memory for the new node and initialize its DATA part to 9 and PREV field to NULL.

Add the new node before the START node. Now the new node becomes the first node of

the list.

X9

|
i

i
x

1

—>

4

START

)

]

il

ad
i

%
i

L
L

d
-

2

SET NEW_NODE -> DATA = VAL
SET NEW_NODE -> PREV = NULL
SET NEW_NODE -> NEXT = START
SET START -> PREV = NEW NODE
SET START = NEW_NODE

EXTT

25

Doubly Linked List....

» Case 2: The new node is inserted at the end.

> — — —
X1 < 7 < 3 < 4 < 2| X

START
Allocate memory for the new node and initialize its DATA part to 9 and its
NEXT field to NULL.

9| X
Take a pointer variable PTR and make it point to the first node of the list.

X |1 < T 7 < - 3 < - 4
START,PTR

Move PTR so that it points to the last node of the list. Add the new node after the
node pointed by PTR.

2| X

>
]

X1 Pl 7 < 3 Pl 4 Piia 2| < 9 | x
START PTR
Step 4: SET NEW _NODE ->DATA = VAL
Step 5: SET NEW NODE -> NEXT = NULL
Step 6: SET PTR = START
Step 7: Repeat Step 8 while PTR -> NEXT != NULL
Step 8 SET PTR = PTR ->» NEXT

[END OF LOOP]
Step 9: SET PTR -> NEXT = NEW_NODE
Step 10: SET NEW NODE -> PREV = PTR
Step 11: EXIT

Doubly Linked List....

>

Case 3: The new node is inserted after a given node.

ESEN I == =2 o= I =n I == I wn) == R A Y

START

Allocate memory for the new node and initialize its DATA part to 9.

| o

Take a pointer wariable PTR and make it point to the first node of the list.

ES N === == I n i === s == R P ES

START,PTR

Mowve PTR further wuntil the data part of PTR =
node has to be inserted.

START

value after which the

<= e 2 [X]

PTR

Insert the new node between PTR and the node succeeding it.

ES S == A

START

N == =2 == I =N =l a

[z] |

PTR | &

IR 2

Y Y

IEN

< =] = [21x]

START

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET PTR = START

Step 6: Repeat Step 7 while PTR -> DATA != NUM
Step 7 SET PTR = PTR -> NEXT

[END OF LOOP]

Step 8: SET NEW _NODE -> NEXT = PTR -> NEXT
Step 9: SET NEW NODE -> PREV = PTR

Step 10: SET PTR -> NEXT = NEW_NODE

Step 11: SET PTR ->» NEXT -> PREV = NEW NODE
Step 12: EXIT

27

Doubly Linked List....

» Case 4: The new node is inserted before a given node.

-
.

-
-

-
-

-
F o

——
-

2

| x]

initialize its DATA part to 9.

it point to the first node of the list.

-
F o

—
-

2

|

now points to the node whose data is equal

i -
Foa

—
T,

and

the

2| X

nod

e preceding it.

A

x|1 - 7 -« 3 < 4
START
Allocate memory for the new node and
9
Take a pointer wvariable PTR and make
x[1 P 7| <= 3 | - |2
START, PTR
Move PTR further so that it
to the wvalue before which the node has to be inserted.
[x]1 P 7 - 3 P a
START
Add the new node in between the node pointed by PTR
X | 1 ¢ - 7 3 < - a
START v 4 v PTR
]
1] | 171 <= 9 = I3

START

Step 4
Step 5:
S5tep 6
Step 7

S5tep 8:
S5tep 9:

S5tep 12

SET PTR = START

SET PTR =
[END OF LOOP]

: SET NEW_NODE -> DATA = VAL

SET NEW_NODE -> NEXT = PTR
SET NEW_NODE -> PREV = PTR -> PREV

Step 11: SET PTR

: EXIT

Step 10: SET PTR -> PREV = NEW_NODE
-» PREV -> NEXT = NEW_NODE

: Repeat Step 7 while PTR ->DATA != NUM
PTR ->» NEXT

2

|

A

Y

28

Doubly Linked List....

> Deletion:
Case 1: The first node is deleted.

€ €]

—> ™ > > ™
X1 3 5 ¢ 7 8 9 X

START

Free the memory occupied by the first node of the list and make the second node of the
list as the START node.

X|3 ¢ ; 5 ¢ E 7

>
«—

START

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 6

[END OF IF]

Step 2: SET PTR = START
Step 3: SET START = START -» NEXT
Step 4: SET START -»> PREV = NULL
Step 5: FREE PTR
Step 6: EXIT

29

Doubly Linked List....

> Deletion:
Case 2: The last node is deleted.

X1 — E Pl 5 - 7 Pl 8 Pl 9

START
Take a pointer variable PTR that points to the first node of the list.

X[1 Pl 3 Pl 5 Pl 7 — 8 — 9
START,PTR
Move PTR so that it now points to the last node of the list.

X |1 Pl 3 Piia 5 - 7 Pl 8 Pl 9
START PTR

Free the space occupied by the node pointed by PTR and store NULL in NEXT field of
its preceding node.

- k- b - b

x| 1
START

A

A
A

il
T

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 7
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR -> NEXT != NULL
Step 4: SET PTR = PTR -> NEXT
[END OF LOOP]
Step 5: SET PTR -> PREV -> NEXT = NULL
Step 6: FREE PTR
Step 7: EXIT

Doubly Linked List....

» Deletion:
Case 3: The node after a given node is deleted.

ESERINT== <= [a] <= <= <= [olx]
?ZﬂETa pointer wariable PTR and make it point to the first node of the list.
XT3 <= < [a] | < <= [olx]

START,PTR

Mowve PTR further so that its data part is equal to the wvalue after which the node has
to be inserted.

I I = I 5 I == [e == I e B == B -3 I === I R "
gl?gle the node succeeding PTR. PTR

NN = S i vy) e I A B R

START PTR |

] > I > Tal =] Js{ F={ [slx]

START

Step 1: IF START = NULL
Write UNDERFLOW

Go to Step 9

[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR -»> DATA != NUM
Step 4: SET PTR = PTR -> NEXT

[END OF LOOP]
Step 5: SET TEMP = PTR -> NEXT
Step 6: SET PTR -> NEXT = TEMP -> NEXT
Step 7: SET TEMP -»> NEXT -> PREV = PTR
Step 8: FREE TEMP
2ftep 90 EXTT

31

Doubly Linked List....

» Deletion:
Case 4: The node before a given node is deleted.
R N N === [= [=== [-) === Y e] ~== i -0) == R S
iZiZTa pointer wariable PTR that points to the first node of the list.
[xTa] <= =] = [=] == 7] = =] = [olx]

START,PTR

Move PTR further till its data part is equal to the wvalue before which the node has
to be deleted.

= O O == O e == O == [-3 B === I A
START I IPTR I

Delete the node preceding PTR.
|I3||@4@ULIL<——’“1L<——’”T—!TITI
START PTR

KTl =] el == J71 J=>{ Is] =] Jolx

START

Step 1: IF START = MNULL
Write UNDERFLOW
Go to Step 9
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR -> DATA 1= NUM

Step 4: SET PTR = PTR -> NEXT

[END OF LOOP]
Step 5: SET TEMP = PTR -> PREV
Step 6: SET TEMP -> PREV -> NEXT = PTR
Step 7: SET PTR ->» PREV = TEMP -> PREV
Step 8: FREE TEMP
Step 9: EXIT

Circular Linked List

» Circular Linked List Types:
I. Circular Single Linked List
[1. Circular Doubly Linked List
» Circular Single Linked List:
> Inacircular single linked list, the last node contains a pointer to the first node of the
list i,e the last node address field contains the address of the first node.

START

Ll —> 2| 3| 1 a| 5| 6| > 7

1

» Operation on circular single linked list are:

I. Insertion
1. Deletion
[11. Searching

V. Traversing

33

Circular Single Linked List

>

Insertion:
Case 1: The new node is inserted at the beginning of the circular linked list.

1| 7

1

Ea

3

A
Ll

4

L
Ll

2

=

b

A
Lal

5

START 4

’

Allocate memory for the new node and initialize its DATA part to 9.

9

1 >

l

>

3

>

START, TR

4

k.
F

2

-

6

>

Take a pointer variable PTR that points to the START node of the list.

5

Move PTR so that it now points to the last node of the list.

Step 4: SET NEW NODE -> DATA = VAL
Step 5: SET PTR = START
Step 6: Repeat Step 7 while PTR-> NEXT != START
Step 7: PTR = PTR-» NEXT
[END OF LOOP]
Step 8: SET NEW NODE -> NEXT = START
Step 9: SET PTR -» NEXT = NEW _NODE
Step 10: SET START = NEW NODE
Step 11: EXIT

PTR

1|73 4| 2| T>6| 15
START 4 PTR
Add the new node in between PTR and START.
9 1| T 7 > 3 > 4| T 2 il >
A START
Make START point to the new node.
Q| —» 1| —»7 > 3 4| —» 2 > b >

START A

34

Circular Single Linked List.....

> Insertion:
Case 2: The new node is inserted at the end of the circular linked list.

1| —4 2 7 > 3 ! = 2 > 6 > 5
sTART 4
Allocate memory for the new node and initialize its DATA part to 9.
2]

Take a pointer wvariable PTR which will initially point to START.

1 —T 3 7 > 3 —r = 4 > 2 > 5 —»> 5
START, 4 PTR
Move PTR so that it now points to the last node of the list.

Y
u

1 > 7 > 3 > 4 > 2 > 6

START A PTR

Add the new node aftter the node pointed by PTR.

1 —» 7 e —» 4 - D > 5 —>» 5 :
START 4 PTR

Step 4: SET NEW NODE -» DATA = VAL
Step 5: SET NEW _NODE -> NEXT = START
Step 6: SET PTR = START
Step 7: Repeat Step 8 while PTR ->NEXT != START
Step 8: SET PTR = PTR -> NEXT
[END OF LOOP]
Step 9: SET PTR -> NEXT = NEW_NODE
Step 10: EXIT

Circular Single Linked List.....
» Deletion:

Case 1: The first node is deleted.

1 > 7 = 3 — 4 = >~ 5 = 5

START 4

Take a wvariable PTR and make it point to the START node of the list.
1 - 7 = 3 —1 = 4 - 2 = 6 - 5

START,+ PTR

Mowve PTR Ffurther so that it now points to the last node of the list.
1 > 7 > 3 | — > 4 > 2 > 6 > 5

START 4 PTR

The NEXT part of PTR is made to point to the second node of the list
and the memory of the first node is freed. The second node becomes

the first node of the list.

7 —= 3 > 4 - 2 > 5 —r= 5
START & PTR

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step B

[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR -> NEXT != START
Step 4: SET PTR = PTR -> NEXT
[END OF LOOP]

Step 5: SET PTR -> NEXT = START -> NEXT
Step 6: FREE START
Step 7: SET START = PTR -> NEXT
Step B: EXIT

36

Circular Single Linked List.....

> Deletion:
Case 2: The last node is deleted.

-= [7]] —>{a] > [2] TG s]
START

Take two pointers PREPTR and PTR which will inditially point to START.

START
PREPTH
PTR

Mowe PTR so that it points to the last node of the list. PREPTR will
always point to the node preceding PTR.

2] 7] e]l =] =] {51,]
PTR

START

Make the PREPTR's next part store START node"s address and free the
space allocated for PTR. Mow PREPTR is the last node of the list.

(2] F>{7] =] > a] —>{>] ">, |

START PREPTR

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]

Step 2: SET PTR = START
Step 3: Repeat Steps 4 and 5 while PTR -> NEXT != START
Step 4: SET PREPTR = PTR
Step 5: SET PTR = PTR -> NEXT
[END OF LOOP]
Step 6: SET PREPTR -> NEXT = START

Step 7: FREE PTR
Step 8: EXIT 37

Circular Doubly Linked List

» Circular Doubly Linked List:
» Circular doubly linked list doesn't contain NULL in any of the node.
» The last node NEXT field of the list contains the address of the first node of the list.
» The first node PREYV field of the list contain address of the last node of the list.

Start

Next MNext
3—> 1> —
Data Data é | Data
> S Prev — Prev

» Operations:

I. Insertion
I[I. Deletion
I11. Searching

IV. Traversing

» Implementation is more complex than other linked lists.

38

Applications of Linked L.ists

>

YV V V

Polynomial Representation

poly

emmmmmmm = Coefficient
| | e c] 2
- A +65x +10x + &

< 3

Y
q -,
]

» 10 1 o (=3 0

i - Power

Implementation of different data structures like stack ,queues etc.
Dynamic Memory allocation.

Used in Image viewer-previous and next images are linked , hence we can access by using
next and previous buttons.

In Operating System, all the running applications are kept in a circular linked list and the OS
gives a fixed time slot to all for running.

Used in web browser to access the next and previous web pages while browsing.

k*khkkkkkkkkkkk

39

