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Graphs-Terminology, sequential and linked representation, graph traversals : Depth 

First Search & Breadth First Search implementation. Spanning trees, Prim’s and  

Kruskal’s method. 

Searching and Sorting - Linear Search, Binary Search, Insertion Sort, Selection Sort, 

Merge Sort, Quick sort, Heap Sort. 

---------------------------------------------------------------------------------------------------------- 

Graph: 

A graph G is defined as an ordered set (V, E), where V(G) represents the set of  vertices and

E(G) represents the edges that connect these vertices.

The figure shows a graph with

V(G) = {A, B, C, D and E}

and E(G) = {(A, B), (B, C),  (A, D), (B, D), (D, E), (C, E)}.

A graph can be directed or undirected.

In an undirected graph, edges do  not have any direction

associated with them. That is, if an edge is drawn  between nodes A and B,

then the nodes can be traversed from A to B

as well as  from B to A.

In a directed graph , edges form an ordered pair. If there is an edge from A to B, then there is a

path from A to B but not from  B to A.

UNIT - IV 
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Graph Terminology 

  Degree of a node: Degree of a node u, deg(u), is the total number of edges     

     containing the node u.  If deg(u) = 0, it means that u does not belong to any edge and   

     such a node is known as an isolated  node. 

 Regular graph :It is a graph where  

     each vertex has the  same number of  

      neighbours. That is, every node has  

      the  same degree. A regular graph with vertices  

      of degree k  is called a k–regular graph or a  

      regular graph of degree k.   

 Path: A path P  written as P = {v0 , v1 , v2 , ..., vn ),  

      of length n from a node u to v is defined as a  

      sequence of (n+1) nodes.   

 Closed path: A path P is known as a closed path if the edge 

      has the same end-points. That is, if v0 = vn 

 Simple path A path P is known as a simple path if all the nodes in the path are distinct with an     

      exception that v0 may be equal to vn . If v0 = vn , then the path is called a closed simple path. 

 Cycle A path in which the first and the last vertices are same. A simple cycle has no  

       repeated  edges or vertices (except the first and last vertices). 
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  Graph Terminology… 

Connected graph: A graph is said to be connected if for any two vertices (u, v) in V there is a

path from u to v. That is to say that there are no isolated nodes in a connected graph. A connected

graph that does not have any cycle is called a tree. Therefore, a tree is treated as a special graph.

Complete graph: A graph G is said to be complete

 if all its nodes are fully connected.  

 That is, there is a path from one node to every 

 other node  in the graph. A complete graph has 

 n(n–1)/2 edges, where n is the number of nodes 

 in G. 
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  Graph Terminology… 

Loop: An edge that has identical end-points is called a loop.

That is, e = (u, u).  Example: e=(2,2) 

Size of a graph : The size of a graph is the total number of

edges in it. 

Multiple edges: Distinct edges which connect the same

end-points are called multiple edges. That is, 

e = (u, v) and e' = (u, v) are known as  

multiple edges of G. 

Multi-graph: A graph with multiple edges and/or loops

is called a multi-graph. 

Labelled graph or weighted graph:

 A graph is said to be labelled if every  

 edge in the graph is assigned some data.  

 In a weighted graph, the edges of the 

 graph are assigned some weight or length. 

Two types of weighted graphs are: 

i) Undirected Weighted Graph

ii) Directed Weighted Graph
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   Graph Terminology… 

Out-degree of a node :The out-degree of a node u, written as outdeg(u), is the number of

edges that originate at u. 

In-degree of a node: The in-degree of a node u, written as indeg(u), is the number of edges

that terminate at u. 

Degree of a node :The degree of a node, written as deg(u), is equal to the sum of in-degree and

out-degree of that node. Therefore, deg(u) = indeg(u) + outdeg (u). 

Directed Graphs :

A directed graph G, also known as a digraph, is a graph in which every edge has a direction 

assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For an 

edge (u, v),  

 The edge begins at u and terminates at v.

 u is known as the origin or initial point of e.

 v is known as the destination or terminal point of e.

 u is the predecessor of v.

 v is the successor of u.

 Nodes u and v are adjacent to each other.
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Graph Representations 

Graphs are represented in two ways: 

i) Adjacency Matrix

ii) Adjacency List

Adjacency Matrix Representation: 

Adjacency matrix representation is also called as sequential representation.

In adjacency matrix, the rows and columns are represented by the graph vertices.

A graph having n vertices, adjacency matrix will have a dimension n x n.

An entry Mij in the adjacency matrix representation of an undirected graph G will be 1 if

there exists an edge between Vi and Vj otherwise 0.
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Adjacency Matrix Representations... 

In directed graph, an entry Mij will be 1 only when there is an edge directed from Vi to Vj 

otherwise 0. 

If the graph is a weighted ,then Non- zero entries of the adjacency matrix are represented by the 

weight of respective edges. 
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  Adjacency List Representation 

An adjacency list is another way in which graphs can be represented in the computer’s memory.

An adjacency list is maintained for each node present in the graph which stores the node value

and a pointer to the next adjacent node to the respective node. If all the adjacent nodes are

traversed then store the NULL in the pointer field of last node of the list.

For a directed graph, the sum of the lengths of all adjacency lists is equal to the number of

edges in G.

For an undirected graph, the sum of the lengths of all adjacency lists is equal to twice the

number of edges in G because an edge (u, v) means an edge from node u to v as well as an edge

from v to u.
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  Adjacency List Representation... 

Adjacency lists can also be modified to store weighted graphs.

In the case of weighted directed graph, each node contains an extra field that is called the

weight of the node. The adjacency list representation of a directed graph is shown in the

following figure.
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  Graph Traversals 

There are two standard methods of graph traversal: 

1. Breadth-first search

2. Depth-first search

Value of status and its significance : 

Breadth-First Search : 

 Breadth first search is a graph traversal algorithm that starts traversing the graph from root

node and explores all the neighbouring nodes. Then, it selects the nearest node and explore all

the unexplored nodes. The algorithm follows the same process for each of the nearest node

until it finds the goal.

 BFS uses the Queue data structure that will hold the nodes that are waiting for further

processing and a variable STATUS to represent the current state of the node.
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  Breadth-First Search… 

Example: 
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  Breadth-First Search… 

During the execution of the algorithm, we use two arrays: 

QUEUE and ORIG. While QUEUE is used to hold the nodes that have to be processed, ORIG

is used to keep track of the origin of each edge.

Initially, FRONT = REAR = –1. The algorithm for this is as follows:

(a) Add A to QUEUE and add NULL to ORIG.

(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the

FRONT element of QUEUE) and enqueue the neighbours of A. 

Also, add A as the ORIG of its neighbours.  

(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also, add

B as the ORIG of its neighbours.
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  Breadth-First Search… 

(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also, add

C as the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has already

been added to the queue and it is not in the Ready state, we will not add B and only add G.

(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the

 neighbours of D. Also, add D as the ORIG of its neighbours . Note that 

 D has two neighbours C and G. Since both of them have already been 

added to the queue and they are not in the Ready state, we will not add 

 them again. 

(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also, add

E as the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has already

been added to the queue and it is not in the Ready state, we will not add C and add only F.
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  Breadth-First Search… 

(g) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the

neighbours of G. Also, add G as the ORIG of its neighbours. Note that 

G has three neighbours F, H, and I.  

Since F has already been added to the queue, we will only add H and I. As I is our final 

destination, we stop the execution of this algorithm as soon as it is encountered and added to the 

QUEUE. Now, backtrack from I using ORIG to find the minimum path P. Thus, we have  

P as A -> C -> G -> I. 
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Depth-first Search 
The depth-first search algorithm progresses by expanding the starting node of G and  then

going deeper and deeper until the goal node is found, or until a node that has no children is

encountered.

When a dead-end is reached, the  algorithm backtracks, returning to the most recent  node

that has not been completely explored.

Depth first search uses stack data structure.
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Depth-first Search… 

 (a) Push H onto the stack.

 STACK: H 

(b) Pop and print the top element of

the STACK, that is, H. Push all the  

neighbours of H onto the stack that 

are in the ready state. The STACK now 

becomes 

PRINT: H STACK: E, I 

(c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto the

stack that are in the ready state. The STACK now becomes

PRINT: I STACK: E, F 

(d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the

stack that are in the ready state. (Note F has two neighbours, C and H. But only C will be added,

as H is not in the ready state.) The STACK now becomes

PRINT: F  STACK: E, C 

(e) Pop and print the top element of the STACK, that is, C. Push all the neighbours of C onto the

stack that are in the ready state. The STACK now becomes

 PRINT: C STACK: E, B, G 
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  Depth-first Search... 

(f) Pop and print the top element of the STACK, that is, G.

Push all the neighbours of G onto the stack that are in the

ready state. Since there are no neighbours of G that are in

the ready state,  no push operation is performed.

The STACK now becomes

  PRINT: G STACK: E, B 

(g)Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the

stack that are in the ready state. Since there are no neighbours of B that are in the ready state,

no push operation is performed. The STACK now becomes

  PRINT: B STACK: E 

(h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the

stack that are in the ready state. Since there are no neighbours of E that are in the ready state,

no push operation is performed. The STACK now becomes empty.

  PRINT: E STACK: 

Since the STACK is now empty, the depth-first search of G starting at node H is complete and 

the  nodes which were printed are: 

     H, I, F, C, G, B, E 

These are the nodes which are reachable from the node H. 
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  Applications of BFS &DFS 

Applications of Breadth-First Search : 

Breadth-first search can be used to solve many problems such as: 

Finding all connected components in a graph G.

Finding all nodes within an individual connected component.

Finding the shortest path between two nodes, u and v, of an unweighted graph.

Finding the shortest path between two nodes, u and v, of a weighted graph.

Applications of Depth-First Search Algorithm 

Depth-first search is useful for: 

Finding a path between two specified nodes, u and v, of an unweighted graph.

Finding a path between two specified nodes, u and v, of a weighted graph.

 Finding whether a graph is connected or not.

Computing the spanning tree of a connected graph.
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  Minimum Spanning Tree 

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

possible number of edges.

It does not have cycles and it cannot be disconnected.

The total number of spanning trees with n vertices that can be created from a complete graph is

equal to n(n-2).

Possible Spanning trees are: 

A minimum spanning tree (MST) is defined as a spanning tree with weight less than or equal

to the weight of every other spanning trees.

In other words, a minimum spanning tree is a spanning tree that has weights associated with its

edges, and the total weight of the tree (the sum of the weights of its edges) is at a minimum.
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  Minimum Spanning Tree... 

Consider an unweighted graph G given below. From G, we can draw many distinct spanning 

trees. Eight of them are given here. For an unweighted graph, every spanning tree is a minimum 

spanning tree. 

Consider a weighted graph G. From G, we can draw three distinct spanning trees. But only a 

single minimum spanning tree can be obtained, that is, the one that has the minimum weight 

(cost) associated with it of all the spanning trees given in, the one that is highlighted is called the 

minimum spanning tree, as it has the lowest cost associated with it. 
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  Minimum Spanning Trees... 

Applications of MST: 

MSTs are widely used for designing networks. For instance, people separated by varying

distances wish to be connected together through a telephone network. A minimum spanning

tree is used to determine the least costly paths with no cycles in this network, thereby

providing a connection that has the minimum cost involved.

MSTs are used to find airline routes. While the vertices in the graph denote cities, edges

represent the routes between these cities. No doubt, more the distance between the cities,

higher will be the amount charged. Therefore, MSTs are used to optimize airline routes by

finding the least costly path with no cycles.

MSTs are also used to find the cheapest way to connect terminals, such as cities, electronic

components or computers via roads, airlines, railways, wires or telephone lines.

MSTs are applied in routing algorithms for finding the most efficient path.

Algorithms for finding Minimum Spanning Trees: 

i) Kruskal’s Algorithm

ii) Prim’s Algorithm
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  Kruskal’s Algorithm 
Kruskal’s algorithm is used to find the minimum spanning tree for a connected weighted graph.

In this algorithm, we use a priority queue in which edges that have minimum weight takes a

priority over any other edge in the graph.

The algorithm aims to find a subset of the edges that forms a tree that includes every vertex,

the total weight of all the edges in the tree is minimized.

When the Kruskal’s algorithm terminates, the forest has only one component and forms a

minimum spanning tree of the graph.

Kruskal’s Algorithm: 

Step 1: Create a forest in such a way that each graph is a separate tree. 

Step 2: Create a priority queue Q that contains all the edges of the graph. 

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY 

Step 4: Remove an edge from Q 

Step 5: IF the edge obtained in Step 4 connects two different trees, then Add it to the forest 

 (for combining two trees into one tree). 

 ELSE 

 Discard the edge 

Step 6: END 
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  Kruskal’s Algorithm... 

Example : Apply Kruskal’s algorithm on the graph 

The weight of the edges given as : 

Sort the edges according to their weights: 

 Add AB to the MST: Add DE to MST: 
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  Kruskal’s Algorithm... 

Add BC to the MST:  Add CD to MST: 

The next step is to add AE, but we can't add that as it will cause a cycle. 

The next edge to be added is AC, but it can't be added as it will cause a cycle. 

The next edge to be added is AD, but it can't be added as it will contain a cycle. 

The cost of MST = 1 + 2 + 3 + 4 = 10 
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  Prim’s Algorithm 

Prim’s algorithm is a greedy algorithm that is used to form a minimum spanning tree for a

connected weighted undirected graph.

This algorithm maintains three sets of vertices which can be given as below:

1. Tree vertices :Vertices that are a part of the minimum spanning tree T.

2. Fringe vertices : Vertices that are currently not a part of T, but are adjacent to some tree

vertex.

3. Unseen vertices : Vertices that are neither tree vertices nor fringe vertices fall under this

category.

 The steps involved in the Prim’s algorithm are:
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  Prim’s Algorithm... 
Example : Construct a minimum spanning tree of the graph given using Prim’s algorithm. 

 cost(MST) = 4 + 2 + 1 + 3 = 10 units. 26 

Step 1 : Choose a starting vertex B. 

Step 2: Add the vertices that are adjacent to B. the edges that connecting 

the vertices are shown by dotted lines. 

Step 3: Choose the edge with the minimum weight among all. i.e. BD 

and add it to MST. Add the adjacent vertices of D i.e. C and E. 

Step 4: Choose the edge with the minimum weight among all. In this 

case, the edges DE and CD are such edges. Add them to MST and 

explore the adjacent of C i.e. E and A. 

Step 5: Choose the edge with the minimum weight i.e. CA. We can't 

choose CE as it would cause cycle in the graph. 



  
 Searching 

Searching means to find whether a particular value is present in an array or not.

If the value is  present in the array, then searching is said to be successful and the searching

process gives the  location of that value in the array.

if the value is not present in the array, the searching  process displays an appropriate message

and in this case searching is said to be unsuccessful.

There are two popular methods for searching the array elements:

i) Linear Search

ii) Binary Search.

Linear Search: 

Linear search, also called as sequential search, is a very simple method used for searching an

array  for a particular value.

It works by comparing the value to be searched with every element of the  array one by one in a

sequence until a match is found.

Linear search is mostly used to search an unordered list of elements.

For example : 

int A[] = {10, 8, 2, 7, 3, 4, 9, 1, 6, 5};  

The value to be searched is VAL = 7, then searching means to find whether the value ‘7’ is 

present in the array or not. If yes, then it returns the position of its occurrence.  

Here,  POS = 3 (index starting from 0). 27



  

Linear Search Algorithm: 

The best case of linear search is when VAL is equal to the first element of the array. In this

case, only one comparison will be made.

The worst case will happen when either VAL is not present in the array or it is equal to the last

element of the array. In both the cases, n comparisons will have to be made.

Linear Search... 
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Binary search is a searching algorithm that works

efficiently with a sorted list.

In this algorithm, BEG and END are the beginning

and ending positions of the list that we are looking

 to search for the element. MID is calculated as 

 (BEG + END)/2. 

if  VAL is not equal to A[MID], then the values of

BEG, END, and MID will be changed depending

on whether VAL is smaller or greater than A[MID].

(a) If VAL < A[MID], then VAL will be present

in the left segment of the array. So, the value of 

END will be changed as END = MID – 1.  

(b) If VAL > A[MID], then VAL will be present

in the right segment of the array. So, the  

value of BEG will be changed as BEG = MID + 1. 

The algorithm will terminate when A[MID] = VAL. When the algorithm ends, we will set

POS = MID. POS is the position at which the value is present in the array.

Finally, if VAL is not present in the array, then eventually, END will be less than BEG. When

this happens, the algorithm will terminate and the search will be unsuccessful.  

Binary Search 
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  Binary Search 

30 



  Binary Search… 
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Sorting means arranging the elements of an array so that they are placed in some relevant order

which may be either ascending or descending.

For example, if we have an array that is declared and initialized as

int A[] = {21, 34, 11, 9, 1, 0, 22};  

Then the sorted array (ascending order) can be given as: 

A[] = {0, 1, 9, 11, 21, 22, 34};  

There are two types of sorting:

1. Internal sorting : which deals with sorting the data stored in the computer’s memory

2. External sorting : which deals with sorting the data stored in files. External sorting is

applied when there is voluminous data that cannot be stored in the memory.

Bubble Sort: 

Bubble sort is a very simple method that sorts the array elements by repeatedly

moving the largest element to the highest index position of the array segment.

Here consecutive adjacent pairs of elements in the array are  compared with each

other.

If the element at the lower index is greater than the element at the  higher index, the

two elements are interchanged so that the smaller element is placed before the bigger

one.

This process will continue till the list of unsorted elements are over.

Sorting 
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Ex: A[] = {30, 52, 29, 87, 63, 27, 19, 54} 

Pass1: 

(a)Compare 30 and 52. Since 30 < 52,

no swapping is done.

(b)Compare 52 and 29. Since 52 > 29,

swapping is done.

 30, 29, 52, 87, 63, 27, 19, 54 

(c)Compare 52 and 87. Since 52 < 87,

no swapping is done.

(d)Compare 87 and 63. Since 87 > 63,

swapping is done.

 30, 29, 52, 63, 87, 27, 19, 54 

(e)Compare 87 and 27. Since 87 > 27,

swapping is done.

 30, 29, 52, 63, 27, 87, 19, 54 

(f)Compare 87 and 19. Since 87 > 19, swapping is done.

30, 29, 52, 63, 27, 19, 87, 54

(g)Compare 87 and 54. Since 87 > 54, swapping is done.

30, 29, 52, 63, 27, 19, 54, 87

After the end of the first pass, the largest element is placed at the highest index of  the array. 

Bubble Sort ... 
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Pass 2: 

(a)Compare 30 and 29. Since 30 > 29, swapping is done.

29, 30, 52, 63, 27, 19, 54, 87

(b)Compare 30 and 52. Since 30 < 52, no swapping is done.

(c)Compare 52 and 63. Since 52 < 63, no swapping is done.

(d)Compare 63 and 27. Since 63 > 27, swapping is done.

 29, 30, 52, 27, 63, 19, 54, 87 

(e) Compare 63 and 19. Since 63 > 19, swapping is done.

29, 30, 52, 27, 19, 63, 54, 87

(f) Compare 63 and 54. Since 63 > 54, swapping is done.

29, 30, 52, 27, 19, 54, 63, 87

After the end of the second pass, the second largest element is placed at the second highest 

index of the array.  

Pass 3: 

(a)Compare 29 and 30. Since 29 < 30, no swapping is done.

(b)Compare 30 and 52. Since 30 < 52, no swapping is done.

(c)Compare 52 and 27. Since 52 > 27, swapping is done.

29, 30, 27, 52, 19, 54, 63, 87

(d)Compare 52 and 19. Since 52 > 19, swapping is done.

29, 30, 27, 19, 52, 54, 63, 87 34 

Bubble Sort... 



  

(e) Compare 52 and 54. Since 52 < 54, no swapping is done.

 Observe that after the end of the third pass, the third largest element is placed at the third    

  highest index of the array. All the other elements are still unsorted. 

Pass 4: 

(a)Compare 29 and 30. Since 29 < 30, no swapping is done.

(b)Compare 30 and 27. Since 30 > 27, swapping is done.

29, 27, 30, 19, 52, 54, 63, 87

(c)Compare 30 and 19. Since 30 > 19, swapping is done.

29, 27, 19, 30, 52, 54, 63, 87

(d)Compare 30 and 52. Since 30 < 52, no swapping is done.

 After the end of the fourth pass, the fourth largest element is placed 

   at the fourth  highest index of the array. 

Pass 5: 

(a)Compare 29 and 27. Since 29 > 27, swapping is done.

27, 29, 19, 30, 52, 54, 63, 87

(b)Compare 29 and 19. Since 29 > 19, swapping is done. 27, 19, 29, 30, 52,

54, 63, 87

(c)Compare 29 and 30. Since 29 < 30, no swapping is done

After the end of the fifth pass, the fifth largest element is placed at the fifth highest index of the 

array. 
35 
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Pass 6: 

(a)Compare 27 and 19. Since 27 > 19, swapping is done.

19, 27, 29, 30, 52, 54, 63, 87

(b)Compare 27 and 29. Since 27 < 29, no swapping is done.

After the end of the sixth pass, the sixth largest element is placed at  the sixth largest  index of 

the array. 

Pass 7: 

(a) Compare 19 and 27. Since 19 < 27, no swapping is done.

Observe that the entire list is sorted now.

 19, 27, 29, 30, 52, 54, 63, 87 
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Insertion sort works as follows: 

The array of values to be sorted is divided into two sets. One that stores sorted values and

another that contains unsorted values.

The sorting algorithm will proceed until there are elements in the unsorted set.

 Suppose there are n elements in the array. Initially, the element with index 0

(assuming LB = 0) is in the sorted set. Rest of the elements are in the unsorted set.

The first element of the unsorted partition has array index 1 (if LB = 0).

 During each iteration of the algorithm, the first element in the unsorted set is picked up and

inserted into the correct position in the sorted set.

Insertion Sort 
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Example : Sort the elements using Insertion sort 

 50,10,30,80,70,20,60,40 

Insertion sort... 
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Selection sort 

39 

Selection sort works as follows:  

 First find the smallest value in the array and place it in the first position. Then, find the second   

      smallest value in the array and place it in the second position. Repeat this procedure until the      

     entire array is sorted.  

 In Pass 1, find the position POS of the smallest value in the array and then swap ARR[POS]  

       and ARR[0]. Thus, ARR[0] is sorted. 

 In Pass 2, find the position POS of the smallest value in sub-array of N–1 elements. Swap     

     ARR[POS] with ARR[1]. Now, ARR[0] and ARR[1] is sorted. 

 In Pass N–1, find the position POS of the smaller of the elements  ARR[N–2] and ARR[N–1]. 

Swap ARR[POS] and ARR[N–2] so  that ARR[0], ARR[1], ..., ARR[N–1] is sorted. 



  

Example : Perform selection sort on the following elements 39,9,81,45,90,27,72,18 

 

 

 

 

 

Selection Sort… 
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PASS POS ARR[0] ARR[1] ARR[2] ARR[3] ARR[4] ARR[5] ARR[6] ARR[7] 

1 1 9 39 81 45 90 27 72 18 

2 7 9 18 81 45 90 27 72 39 

3 5 9 18 27 45 90 81 72 39 

4 7 9 18 27 39 90 81 72 45 

5 7 9 18 27 39 45 81 72 90 

6 6 9 18 27 39 45 72 81 90 

7 6 9 18 27 39 45 72 81 90 

ARR[0] ARR[1] ARR[2] ARR[3] ARR[4] ARR[5] ARR[6] ARR[7] 

39 9 81 45 90 27 72 18 



  

 Merge sort is a sorting algorithm that uses the divide, conquer, and combine algorithmic

paradigm.

 Divide means partitioning the n-element array to be sorted into two sub-arrays of n/2 elements.

If  A is an array containing zero or one element, then it is already sorted. However, if there are

more  elements in the array, divide A into two sub-arrays, A 1and A2 , each containing about

half of the elements of A.

 Conquer means sorting the two sub-arrays recursively using merge sort.

 Combine means merging the two sorted sub-arrays of size n/2 to produce the sorted array of n

elements.

Example: 39,9,81,45,90,27,72,18 

Divide and Conquer the array

Merge Sort 
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 39 9 81 45 90 27 72 18 

39 9 81 45 90 27 72 18 

39 9 81 45 90 27 72 18 

39 9 81 45 90 27 72 18 



  

Combine the elements to form the sorted array:

The merge sort algorithm recursively divides the list into smaller lists, the merge algorithm

conquers the list to sort the elements in individual lists. Finally, the smaller  lists are merged to

form one list.

Merge Sort Algorithm: 

Merge Sort… 
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39 9 81 45 90 27 72 18 

9 39 45 81 27 90 18 72 

9 39 45 81 18 27 72 90 

9 18 27 39 45 72 81 90 



  

Combine the elements to form the sorted array: 

Merge Sort… 
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  Merge Sort… 
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Technique 

Quick sort works as follows: 

1.Set the index of the first element in the array to loc and left variables. Also, set the index of  the

last element of the array to the right variable.

That is, loc = 0, left = 0, and right = n–1 (where n in the number of elements in the array)

2.Start from the element pointed by right and scan the array from right to left, comparing each

element on the way with the element pointed by the variable loc.

That is, a[loc] should be less than a[right].

(a)If that is the case, then simply continue comparing until right becomes equal to loc. Once

right = loc, it means the pivot has been placed in its correct position.

(b)However, if at any point, we have a[loc] > a[right], then interchange the two values and

jump to Step 3.

(c)Set loc = right

3.Start from the element pointed by left and scan the array from left to right, comparing each

element on the way with the element pointed by loc.

That is, a[loc] should be greater than a[left].

(a)If that is the case, then simply continue comparing until left becomes equal to loc. Once

left = loc, it means the pivot has been placed in its correct position.

(b)However, if at any point, we have a[loc] < a[left], then interchange the two values and  jump

to Step 2.

(c)Set loc = left.

Quick Sort… 
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  Quick Sort… 
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Quick Sort… 
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