

 Implementation of queue:

 Array Implementation of queue

 Linked List Implementation of queue

 Array Implementation of queue:

 Queues can be represented using linear arrays.

 Queue Operations:

 Insertion:

 This operation is used to insert an element into the queue at rear end. Before

inserting an element we have to check whether the queue is full or not . if

queue is already full it has to display

queue overflow otherwise it permits

insertions.

 While inserting the first element both rear

and front are set to zero, from second

insertion onwards only rear will be incremented by 1.

Queue…

20

Insertion Example:

Array Implementation of Queue …

21

 Deletion:

 This operation is used to delete an element from front end of the queue.

 While deleting an element ,we have to check for underflow condition. An underflow

occurs if front = –1 or front > rear.i,e we cannot delete an element from empty queue.

 When an element is deleted, Front is incremented by 1.

 Rear value does not change while deleting an element from queue.

 Example:

Array Implementation of Queue …

22

 Insertion:

 The new element is added as the last element of the queue.

 Initially FRONT=NULL and REAR = NULL.

 if FRONT=NULL, then the queue is empty.

 There is no overflow condition in linked list implementation of queue.

 Example:

Linked List Implementation of Queue

23

 Deletion:

 The delete operation is used to delete the element that is first inserted in a queue, i.e.,

the element whose address is stored in FRONT.

 Before deleting the value, we must first check if FRONT=NULL because if this is the

case, then the queue is empty and no more deletions can be done.

 If an attempt is made to delete a value from a queue that is already empty, an

underflow.

 Example:

Linked List Implementation of Queue

24

 Circular Queue:

 In linear queues, insertions can be done only at one end called the REAR and deletions

are always done from the other end called the FRONT.

 Suppose if we delete first two elements i,e 54 and 9 from the above queue, we get

 After deletion, the space cannot be reused for inserting the new elements even though

there is space available, the overflow condition still exists because the condition REAR

= MAX – 1 still holds true. This is a major drawback of a linear queue.

 To resolve this problem, we have two solutions.

 First, shift the elements to the left so that the vacant space can be occupied and

utilized efficiently. But this can be very time-consuming, especially when the

queue is quite large.

 Second, to use a circular queue.

Types of Queue

25

 In the circular queue, the first index comes right after the last index.

 The circular queue will be full only when

FRONT = 0 and REAR = Max – 1.

 Operations performed on circular queue are

 Insertion

 Deletion

 Insertion:

 For insertion, we now have to check for the following three conditions:

1. If front=0 and Rear=MAX-1, then circular queue is full.

2. If REAR != MAX – 1 , then REAR will be incremented and the value will be

inserted.

Circular Queue…

26

3. If FRONT != 0 and REAR = MAX – 1, then it means that the queue is not full. So, set

REAR = 0 and insert the new element there.

Circular Queue…

27

 Deletion:

 To delete an element, we check for following three conditions:

1. If FRONT = –1, then there are no elements in the queue,

This condition is called as Underflow condition.

2. If the queue is not empty and FRONT = REAR, then

after deleting the element at the front the queue

becomes empty and so FRONT and REAR are set to –1.

3. If the queue is not empty and FRONT = MAX–1, then after deleting the element at

the front, FRONT is set to 0.

Circular Queue…

28

Dequeue:

 A Dequeue is a list in which the elements can be inserted or deleted at either end.

 It is also known as a head-tail linked list because elements can be added to or removed

from either the front (head) or the back (tail) end.

 Types of Dequeue:

1. Input Restricted Dequeue : In this dequeue insertions can be done only at

one end but deletions can be done from both the ends.

2. Output Restricted Dequeue : In this dequeue deletions can be done only at

one end but insertions can be done on both the ends.

Dequeue

29

 Applications of Queue are:

1. Queues are widely used as waiting lists for a single shared resource like printer, disk,

CPU.

2. Queues are used to transfer data asynchronously (data not necessarily received at same

rate as sent) between two processes.

3. Queues are used as buffers on MP3 players and portable CD players, iPod playlist.

4. Queues are used in Playlist for jukebox to add songs to the end, play from the front of

the list.

5. Queues are used in operating system for handling interrupts. When programming a real-

time system that can be interrupted, for example, by a mouse click, it is necessary to

process the interrupts immediately, before proceeding with the current job. If the

interrupts have to be handled in the order of arrival, then a FIFO queue is the appropriate

data structure.

Queue Applications

30

