
A stack is a linear data structure, which works on the principle of LIFO/FILO.

Stack is closed at one end and opened at other end.

The elements can be added and removed from the stack only at the top(opened end).

Basic Operations performed on stack are:

PUSH-Insertion

POP-Deletion

PEEK-Returns top most element

Stack maintains a variable called TOP,

if TOP=-1 then the stack is empty.

STACK

1

When an element is pushed into the stack TOP value is incremented by 1 i,e TOP++.

When an element is popped from the stack TOP value is decremented by1 I,e TOP--.

Stack can be implemented in two ways:

I. Stack Implementation using Arrays

II. Stack Implementation using Linked List

Stack Implementation using Arrays:

Stack can be represented using array as

Here, the maximum size(MAX) of the stack is 10 i,e it can hold up to 10 elements.

Basic Operations performed on stack implemented using arrays are:

PUSH

POP

PEEK

Stack…

2

 PUSH:

The push operation is used to insert an element into the stack. The new element is added at

the topmost position of the stack.

While inserting the value, we must first check if TOP=MAX–1, because if that is the

case, then the stack is full and no more insertions can be done .This condition is called as

stack overflow .

If the above condition fails then we can perform the insertion into the stack , then TOP

value is incremented by 1.

Stack Implementation using Array…

3

 POP:

The POP operation is used to delete an element from top of the stack.

Before deleting an element we have to check whether TOP=-1 ,if that is the case POP

operation is not possible . This condition is called as stack underflow.

Other wise we can pop an element from the stack by decrementing the TOP by 1.

Stack Implementation using Array…

4

 PEEK:

PEEK is an operation that returns the value of the topmost element of the stack without

deleting it from the stack.

If we perform PEEK operation on the stack ,it will first check

whether the stack is empty or not, if stack is not empty then it returns the

top most element in the stack i,e 5 other wise it has to print stack is empty.

Stack Implementation using Array…

5

 Stack Implementation using Linked List:

In a linked stack, every node has two parts—one that stores data and another that stores

the address of the next node.

 if the stack size cannot be determined in advance, then linked representation is used.

The START pointer of the linked list is used as TOP.

All insertions and deletions are done at the node pointed by TOP.

If TOP = NULL, then it indicates that the stack is empty.

The linked representation of a stack is :

A linked stack supports all the three stack operations, that is, push, pop, and peek.

Stack Implementation using Linked List

6

Operations on a Linked Stack :

PUSH:

The push operation is used to insert an element into the stack. The new element is

added at the topmost position of the stack.

Push 5

 Push 6

 similarly Push 2,4,3,7,1 we get

Stack Implementation using Linked List….

7

TOP

 TOP

 New Node

POP

The pop operation is used to delete the topmost element from a stack.

Before deleting the element, we must first check

if TOP=NULL (stack empty).

 If an attempt is made to delete a value from a stack

that is already empty, an Underflow message is printed.

If TOP!=NULL , then top most element is deleted from

the stack i,e in this case element 1 is deleted from the

stack.

 Now the new top element is 7.

Stack Implementation using Linked List….

8

PEEK

It is used to print the top element of stack.

If TOP=NULL returns stack is empty, else prints the top element in the linked stack.

If Peek operation is performed on the above stack ,it will return element 1.

Stack Implementation using Linked List….

9

Step 1:if(top==NULL)

 return “stack is empty”;

Step 2: else

 return top ->data;

The applications of the stack are

1. Reversing a list

A list of numbers can be reversed by reading each number from an array starting from

the first index and pushing it on a stack. Once all the numbers have been read, the

numbers can be popped one at a time and then stored in the array starting from the first

index.

Example: 10,30,15,20

 Push: Pop:

 Reverse List: 20 15 30 10

Applications of Stack

10

10

30

10

15

30

10

20

15

30

10

20

15

30

10

15

30

10

30

10 10

